A Modified Aerosol Free Vegetation Index Algorithm for Aerosol Optical Depth Retrieval Using GOSAT TANSO-CAI Data

نویسندگان

  • Guosheng Zhong
  • Xiufeng Wang
  • Hiroshi Tani
  • Meng Guo
  • Anthony R. Chittenden
  • Shuai Yin
  • Zhongyi Sun
  • Shinji Matsumura
چکیده

In this paper, we introduced a new algorithm for retrieving aerosol optical depth (AOD) over land, from the Cloud and Aerosol Imager (CAI), which is one of the instruments on the Greenhouse Gases Observing Satellite (GOSAT) for detecting and correcting cloud and aerosol interference. We used the GOSAT and AErosol RObotic NETwork (AERONET) collocated data from different regions over the globe to analyze the relationship between the top-of-atmosphere (TOA) reflectance in the shortwave infrared (1.6 μm) band and the surface reflectance in the red (0.67 μm) band. Our results confirmed that the relationships between the surface reflectance at 0.67 μm and TOA reflectance at 1.6 μm are not constant for different surface conditions. Under low AOD conditions (AOD at 0.55 μm < 0.1), a Normalized Difference Vegetation Index (NDVI) based regression function for estimating the surface reflectance of 0.67 μm band from the 1.6 μm band was summarized, and it achieved good performance, proving that the reflectance relations of the 0.67 μm and 1.6 μm bands are typically vegetation dependent. Since the NDVI itself is easily affected by aerosols, we combined the advantages of the Aerosol Free Vegetation Index (AFRI), which is aerosol resistant and highly correlated with regular NDVI, with our regression function, which can preserve the various correlations of 0.67 μm and 1.6 μm bands for different surface types, and developed a new surface reflectance and aerosol-free NDVI estimation algorithm, which we named the Modified AFRI1.6 algorithm. This algorithm was applied to AOD retrieval, and the validation results for our algorithm show that the retrieved AOD has a consistent relationship with AERONET measurements, with a correlation coefficient of 0.912, and approximately 67.7% of the AOD retrieved data were within the expected error range (± 0.1 ± 0.15AOD(AERONET)).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Dark Target Algorithm for the GOSAT TANSO-CAI Sensor in Aerosol Optical Depth Retrieval over Land

Cloud and Aerosol Imager (CAI) onboard the Greenhouse Gases Observing Satellite (GOSAT) is a multi-band sensor designed to observe and acquire information on clouds and aerosols. In order to retrieve aerosol optical depth (AOD) over land from the CAI sensor, a Dark Target (DT) algorithm for GOSAT CAI was developed based on the strategy of the Moderate Resolution Imaging Spectroradiometer (MODIS...

متن کامل

Aerosol Property Retrieval Algorithm over Northeast Asia from TANSO-CAI Measurements Onboard GOSAT

The presence of aerosol has resulted in serious limitations in the data coverage and large uncertainties in retrieving carbon dioxide (CO2) amounts from satellite measurements. For this reason, an aerosol retrieval algorithm was developed for the Thermal and Near-infrared Sensor for carbon Observation-Cloud and Aerosol Imager (TANSO-CAI) launched in January 2009 on board the Greenhouse Gases Ob...

متن کامل

Gosat Calibration Plan

Greenhouse gases Observing SATellite (GOSAT) is a Japanese MOE/NIES/JAXA joint program to observe greenhouse gases, such as CO2 and CH4, from space. The GOSAT will be launched in 2008. The GOSAT carries a Fourier transform spectrometer and a push broom imager. The GOSAT development is going on in phase-C/D and characterized the sensor performance in laboratory. The post-launch calibration items...

متن کامل

Retrieving XCO2 from GOSAT FTS over East Asia Using Simultaneous Aerosol Information from CAI

In East Asia, where aerosol concentrations are persistently high throughout the year, most satellite CO2 retrieval algorithms screen out many measurements during quality control in order to reduce retrieval errors. To reduce the retrieval errors associated with aerosols, we have modified YCAR (Yonsei Carbon Retrieval) algorithm to YCAR-CAI to retrieve XCO2 from GOSAT FTS measurements using aero...

متن کامل

Detection of Absorbing Aerosol Using Single Near-UV Radiance Measurements from a Cloud and Aerosol Imager

The Ultra-Violet Aerosol Index (UVAI) is a practical parameter for detecting aerosols that absorb UV radiation, especially where other aerosol retrievals fail, such as over bright surfaces (e.g., deserts and clouds). However, typical UVAI retrieval requires at least two UV channels, while several satellite instruments, such as the Thermal And Near infrared Sensor for carbon Observation Cloud an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016